

What is the gravitational force exerted on the Sun by the Earth?

(Total 1 mark)

The diagram shows gravitational equipotentials. Adjacent equipotentials are separated by an equal gravitational potential difference V.

Which point has the greatest gravitational field strength?

(Total 1 mark)

3.

4.

A planet has radius R and density ρ . The gravitational field strength at the surface is g.

What is the gravitational field strength at the surface of a planet of radius 2*R* and density 2 ρ ?

(Total 1 mark)

The diagram shows equipotential lines for a uniform gravitational field. The lines are separated by 20 m.

An object of mass 4 kg is moved from **P** to **Q**.

What is the work done against gravity to move the object?

(Total 1 mark)

The graph shows how the gravitational potential V varies with the vertical distance d from the surface of the Earth.

What does the gradient of the graph represent at the surface of the Earth?

Α	potential energy	0
в	mass of the Earth	0
С	magnitude of the gravitational constant	0
D	magnitude of the gravitational field strength	0

7.

What is the angular speed of a satellite in a geostationary orbit around the Earth?

(Total 1 mark)

The graph shows how the gravitational potential varies with distance between two planets, **K** and **L**, that have the same radius.

Which statement is correct?

Α	The mass of L is greater than the mass of K.	0
В	The gravitational field strength at the surface of ${\bf L}$ is greater than that at the surface of ${\bf K}.$	0
С	The escape velocity from planet ${\sf L}$ is greater than that from planet ${\sf K}$.	0
D	More work must be done to move a mass of 1 kg from the surface of ${f K}$ to a distant point, than 1 kg from the surface of ${f L}$.	0
		/

A satellite **X** of mass m is in a concentric circular orbit of radius R about a planet of mass M.

What is the kinetic energy of X?

(Total 1 mark)

The distance between the Sun and Mars varies from 2.1 × 10^{11} m to 2.5 × 10^{11} m. When Mars is closest to the Sun, the force of gravitational attraction between them is *F*.

What is the force of gravitational attraction between them when they are furthest apart?

D 1.4*F*

Charon is a moon of Pluto that has a mass equal to $\frac{1}{9}$ that of Pluto.

The distance between the centre of Pluto and the centre of Charon is d.

X is the point at which the resultant gravitational field due to Pluto and Charon is zero.

not to scale

What is the distance of **X** from the centre of Pluto?

Α

В

С

D

 $^{\circ}$

Which graph shows the relationship between the time period T and the orbital radius r of a planet in orbit around the Sun?

12. The diagram shows equipotential lines near a group of asteroids.

Which arrow shows the direction of the gravitational field at X?

(Total 1 mark)

13.

Planet **N** has a gravitational potential -V at its surface. Planet **M** has double the density and double the radius of planet **N**. Both planets are spherical and have uniform density.

0

0

 $^{\circ}$

 $^{\circ}$

What is the gravitational potential at the surface of planet M?

A –16V

В

- -8V
- C -4V
- **D** –0.2*V*

Satellites **N** and **F** have the same mass and are in circular orbits about the same planet. The orbital radius of **F** is greater than that of **N**.

Which is greater for **F** than for **N**?

(Total 1 mark)

15. A planet of mass M and radius R rotates so quickly that material at its equator only just remains on its surface.

What is the period of rotation of the planet?

(Total 1 mark)

What is the angular speed of a satellite in a geostationary orbit around the Earth?

Gravitational Fields MCQ

PhysicsAndMathsTutor.com

17.

19.

Which row shows two scalar quantities?

Α	gravitational potential	gravitational field strength	0
в	mass	gravitational potential	0
С	gravitational field strength	weight	0
D	weight	gravitational potential	0

(Total 1 mark)

18. An object moves freely at 90° to the direction of a gravitational field.

The acceleration of the object is

Azero.Bopposite to the direction of the gravitational field.Cin the direction of the gravitational field.Dat 90° to the direction of the gravitational field.

(Total 1 mark)

A spacecraft of mass 1.0×10^6 kg is in orbit around the Sun at a radius of 1.1×10^{11} m The spacecraft moves into a new orbit of radius 2.5×10^{11} m around the Sun.

 $^{\circ}$

0

What is the total change in gravitational potential energy of the spacecraft?

- **A** $-6.76 \times 10^{14} \text{ J}$
- **B** −3.38 × 10¹⁴ J ○
- **C** 3.38 × 10¹⁴ J
- **D** 6.76 × 10¹⁴ J